Pre-runtime scheduling of avionic systems: A win-win industry-academia collaboration

Elina Rönnberg Saab and Division of Optimization, Department of Mathematics, LiU

STEW 2016, Linköping

(ロ・・部・・ドレ・ドレー かくの

What is my presentation about?

An example of how research and development in one area of technology calls for research in another

- ► Describe my area of research
- Introduce the topic of research provided by Saab
- ▶ Explain how we have formulated a joint research project
- ► Describe how we handle the collaboration in practice
- Provide some preliminary results and lessons learned

Operations reseach / Optimisation

- Operations Research: advanced analytical methods to help make better decisions
 - mathematical modeling
 - statistical analysis
 - mathematical optimisation

Search for optimal or near-optimal solutions to complex decision-making problems

Operations reseach / Optimisation

- Operations Research: advanced analytical methods to help make better decisions
 - mathematical modeling
 - statistical analysis
 - mathematical optimisation

Search for optimal or near-optimal solutions to complex decision-making problems

- Mathematical optimisation / mathematical programming: select a best element from some set of available alternatives
 - Find a shortest path or transportation routes
 - Production and inventory levels
 - Mechanical construction, etc ...
- Different types of mathematics in different areas

Discrete optimisation

- ▶ Decisions: yes/no, either/or, discrete quantities
- ► Typically NP-hard problems
 - Some can be solved within reasonable time by standard approaches and commercial solvers
 - Some cannot …
- ▶ Research: Push the limit for which problems that can be solved
- ▶ Key: Understand and exploit structure of the problem

My area of research

Discrete optimisation

- Scheduling and resource allocation
 - Healthcare applications (nurse scheduling, treatment planning)
 - Scheduling in telecommunications network
 - Open-pit mining
 - Portfolio optimisation
- Decomposition methods
 - Column generation
 - Benders decomposition

- ▶ Preferably: Relevant to society / industry
- ▶ Emphasis on the term *decision support*

Industrial need

Avionics: electronics within an aeroplane

- sensors that gather information
- units where information is processed
- actuators that control the aeroplane
- equipment that presents information to the pilot

Saab develops avionic systems for future aeroplanes

An avionic system

э

An avionic system

INKÖPING

Elina Rönnberg

Temporal and spatial partitioning

- ▶ Spatial: Decide where to perform a Task (by engineers)
- ▶ Temporal: Decide when to perform a Task

Challenge

- Communication network
 - Assign ~ 100 messages to timeslots
- Application modules:
 - Run applications
 - 8 AMs
 - 25 partitions ×64 repetitions
- Communication modules:
 - Three types of communication
 - -7 CMs
 - $-~\sim$ 20 000 tasks

э

Research topic and collaboration 0000000

Concluding comments

Challenge

- Communication network
 - Assign \sim 100 messages to timeslots
- Application modules:
 - Run applications
 - 8 AMs
 - 25 partitions ×64 repetitions
- ► Communication modules:
 - Three types of communication
 - -7 CMs
 - $-~\sim$ 20 000 tasks

How create a temporal partitioning?

How, why and when?

For a certain project / avionic platform

- ▶ New software functionality is added iteratively
- Create a new schedule in each iteration
- Difficult to know in advance if a feasible schedule exists or not

Scheduling tool

- Find a feasible schedule when it exists
- Detect if no feasible schedule exists

Why a challenge?

- Mathematical model and commercial solver?
 - NO! At least a hundred million binary variables
 - Computationally intractable

Why a challenge?

- Mathematical model and commercial solver?
 - NO! At least a hundred million binary variables
 - Computationally intractable
- Design a primal heuristic?
 - NO! Not suitable for this setting
 - +: Typically fast if successful
 - -: If it fails you don't know why
 - $-\,$ This is what you can find among previous work

Why a challenge?

- Mathematical model and commercial solver?
 - NO! At least a hundred million binary variables
 - Computationally intractable
- ▶ Design a primal heuristic?
 - NO! Not suitable for this setting
 - +: Typically fast if successful
 - -: If it fails you don't know why
 - This is what you can find among previous work
- ► Conclusion:

To accommodate needs, new methods are needed

- Use decomposition techniques to have guarantees
- Combine with other methods

How collaborate to solve this problem?

- 1. Involve the right people
- 2. Specify the research topic

æ

<ロト <部ト < 注ト < 注ト

Project

Instance	А	В	С
Number of binary variables	33 · 10 ⁶	81 · 10 ⁶	114 · 10 ⁶

iables 33 · 10 ⁶ 8	$31 \cdot 10^{6}$:	$114 \cdot 10^{6}$
-------------------------------	---------------------	--------------------

Instance	А	В	С
Number of binary variables Number of binary variables after	33 · 10 ⁶	81 · 10 ⁶	$114\cdot 10^6$
reformulation and pre-processing	200 000	900 000	1 200 000

Instance	А	В	С
Number of binary variables	33 · 10 ⁶	$81\cdot 10^6$	$114 \cdot 10^6$
Number of binary variables after			1 000 000
reformulation and pre-processing	200 000	900 000	1 200 000
Solution times	_(1)	—	_

(1): One week, consumed more than 500 GB RAM computer with two Intel Xeon E5-2640-v3 processors (8 cores, 2.6 GHz) och 768 GB RAM

Instance	А	В	С
Number of binary variables	$33\cdot 10^6$	$81\cdot 10^6$	$114\cdot 10^6$
Number of binary variables after reformulation and pre-processing	200 000	900 000	1 200 000
Solution times	(1)	_	—

Design of solution method

(1): One week, consumed more than 500 GB RAM

computer with two Intel Xeon E5-2640-v3 processors (8 cores, 2.6 GHz) och 768 GB RAM

Instance	А	В	С
Number of binary variables	$33\cdot 10^6$	81 · 10 ⁶	$114\cdot 10^6$
Number of binary variables after reformulation and pre-processing	200 000	900 000	1 200 000
Solution times	_(1)	—	—

Design of solution method

Solution times

< 2 min 14 min 19 min

(1): One week, consumed more than 500 GB RAM

computer with two Intel Xeon E5-2640-v3 processors (8 cores, 2.6 GHz) och 768 GB RAM

Win-win and lessons learned (preliminary)

- LiU: Interesting topic for research, results can be generalised Saab: Meet future needs
 - Organisation is crucial!
 Steering group = access to the right people

Parallel planning

- Publications
- Deliveries to Saab to show progress
- ► Clear goal:
 - +: The direction of the research is clear
 - -: Achievements always compared to the industrial ambition

Conclusions and continued research

- Collaboration is established
- Research topic is defined, goals are set
- ► A first delivery:
 - Paper to be submitted
 - A first scheduling tool for Saab
- Next step: Enhance computational performance Twice the size in half the time? ;-)

Conclusions and continued research

- Collaboration is established
- Research topic is defined, goals are set
- ► A first delivery:
 - Paper to be submitted
 - A first scheduling tool for Saab
- Next step: Enhance computational performance Twice the size in half the time? ;-)

Thanks for listening!

