



# Security Challenges and Solutions in IoT systems

Christian Gehrmann, April 5, 2016

# Contents

- IoT systems different scenarios
- Major threats/attacks
- Other major security challenges
- Future solutions potential directions
  - DDoS prevention
  - Stealth prevention
  - Secure SW upgrade
  - Authorization solutions
  - Key management
- Conclusions

# IoT System?

- System of connected devices, vehicles, buildings etc.
- Gartner: "In the post mobile world the focus shifts to the mobile user who is surrounded by a mesh of devices extending well beyond traditional mobile devices"
- Complex?
  - Some system are very complex, others rather simple....

#### Automotive



#### Industry control system





#### Security System



#### Home Control



### IoT infrastructure – typical system





#### Network based attacks



#### **Direct Physical attacks**



#### SW upgrade attacks



#### Major attacks in IoT systems, summary

- Dos and DDoS on battery driven resource constraint IoT units (typically communicating using low power wireless link technologies)
- Networked based attacks utilizing weaknesses in embedded operating systems and/or protocol implementations
- Direct physical attacks against IoT units (probing, stealing devices and their memories etc.)
- SW vulnerabilities in upgrade packages

# Other major security issues

- Device credential provisioning, update and ownership "roll-over"
- Device recovery at critical SW failure
- Dynamic authorization and access control

#### **Security solution examples**

#### Detecting Battery Drain attack with short Message Authentication Code (I)



#### Detecting Battery Drain attack with short Message Authentication Code (II)

| Octet 1          |   |     | Octet 2 | Octet 3        | Octet 4 |
|------------------|---|-----|---------|----------------|---------|
| Ver              | т | TKL | Code    | Message ID     |         |
| Request ID       |   |     |         | Validity check |         |
| Options (if any) |   |     |         |                |         |
| Payload (if any) |   |     |         |                |         |

Include a short validity check, i.e. MAC in the CoAP header for instance

#### Detecting Battery Drain attack with short Message Authentication Code (III)

- Procedure at lot Device side:
  - Use a pre-share key and the ID field in the CoAP header to find a "session key" and calculate a short MAC which is compared with a MAC field in the header
  - If the values co-inside accept the message as valid
  - If a *large number* of invalid packages arrives within a relative short time period, take action like
    - Shut down network interface
    - Power down for a period
    - Etc.
- References:
  - C. Gehrmann, M. Tiloca and R. Höglund, "SMACK: Short Message Authentication Check Against Battery Exhaustion in the Internet of Things" In: The 12th IEEE International Conference on Sensing Communication and Networking (SECON 2015), Seattle, Washington, USA, 2015.
  - M. Tiloca, C. Gehrmann and L. Seitz, "On improving resistance to Denial of Service and key provisioning scalability of the DTLS handshake", International Journal of Information Security, pp. 1-21, Springer, 2016.

# Device theft protection (I)

- Some different options:
  - Tamper resistant protection of keys etc. on device using secure hardware modules
  - Physical protected location of device
  - Key calculation schemes dependent on key material from *several locally present* units (see next slide)

# Device theft protection (II)



#### Secure SW upgrade (I)



# Secure SW upgrade (II)



J. Deng, R. Han and S. Mishra, "Secure Code Distribution in Dynamically Programmable Wireless Sensor Networks", Information Processing in Sensor Networks, IPSN 2006, pp. 292-300, 2006.

# Secure SW upgrade (III)

- SW upgrade based on *existing security relation* between DMS and IoT unit
- Let the DMS do the following:
  - Generate random symmetric integrity protection and encryption keys.
  - Split the SW update image into n distinct parts.
  - Use the selected symmetric keys to generate n distinct SW upgrade packages
  - Distribute the SW packages to one or several SW image distribution servers.
  - Notify the IoT units of the availability of a new SW upgrade image and contact each of the IoT units in the system, set-up a secure connection with each of them and transfer securely the SW update parameters, including the generated symmetric SW upgrade protection keys and the *final SW package hash* (need not be signed), to the units.

## Secure SW upgrade (IV)



#### IoT Access control (I)



- RS needs to know C is authorized
- C needs to know that the response is from RS
- Integrity and replay protection for Request/Response
- Possibly encryption for Request/Response

#### IoT Access control (II)



- Access to sensor readings must be controlled
- Clients need to be able to verify the origin of a sensor reading and to detect replay or fraudulent messages

# IoT Access control (III)



This is the basic approach, optimized for constrained servers.

# IoT Access control (IV)



This approach is optimized for constrained clients

# IoT Access control (V)

- Contributions to different IETF working groups
  - CoRE (Constrained Restful Environments)
  - ACE (authentication and authorization in constrained environments)
  - COSE (CBOR Object Signing & Encryption)
- Results: RFC 7744 (use cases and requirements)
- 4 active drafts
  - 2 have been adopted by IETF working groups (means they plan to publish them as RFCs)
    - Architecture (draft-ietf-ace-actors)
    - Authorization (draft-ietf-ace-oauth-authz)
    - Requirements for end-to-end security (draft-hartke-core-e2e-security-reqs)
    - Object security (draft-selander-ace-object-security)

# Key Management (I)

- Providing key material to a large number of non-human operated units can be a rather cumbersome/expensive task
- Current mobile SIM-oriented approach does not scale well to large IoT infrastructures from device cost, trust model or maintenance cost points of view.
  - This is for the moment a major issue for dissuasion with respect to the model to use for 5G
  - Mobile operators are still very reluctant making any changes to the current SIM-oriented model
- IoT solutions are network agnostic and shall work in cellular and non-cellular systems => Proprietarily key management solutions are expected to dominate!

# Key Management (II)

#### One possible model for key provisioning



# Key Management (III)



# Key Mangement (IV)

#### Some identity module impl. options



# Key Mangement (V)

#### Some further identity module impl. options



# Conclusions

- IoT systems require robust security solutions
  - "Old" attacks in slightly new settings

New models for credential management

- Standardized solutions will most probably dominate in the long time frame and proprietary solutions in the shorter time frame
- Good opportunities for novel security solutions and in turn also new business models